Лекция 3 Системы счисления (СС)

Лекции по предмету «Информатика»
Информация о работе
  • Тема: Лекция 3 Системы счисления (СС)
  • Количество скачиваний: 117
  • Тип: Лекции
  • Предмет: Информатика
  • Количество страниц: 17
  • Язык работы: Русский язык
  • Дата загрузки: 2015-01-03 11:13:07
  • Размер файла: 1037.45 кб
Помогла работа? Поделись ссылкой
Информация о документе

Документ предоставляется как есть, мы не несем ответственности, за правильность представленной в нём информации. Используя информацию для подготовки своей работы необходимо помнить, что текст работы может быть устаревшим, работа может не пройти проверку на заимствования.

Если Вы являетесь автором текста представленного на данной странице и не хотите чтобы он был размешён на нашем сайте напишите об этом перейдя по ссылке: «Правообладателям»

Можно ли скачать документ с работой

Да, скачать документ можно бесплатно, без регистрации перейдя по ссылке:

Лекция 3

Системы счисления (СС).

СС – совокупность приёмов и правил для записи чисел цифровыми знаками, символами. СС должны обеспечивать возможность представления любого числа в рассматриваемом диапазоне, единственность представления.

СС:
1. позиционные (значение цифры зависит от позиции в записи, место – разряд, кол-во цифр – разрядность; каждому разряду соответствует степень основания)
2. непозиционные


Двоичная система счисления. В настоящий момент – наиболее употребительная в информатике, вычислительной технике и смежных отраслях система счисления. Использует две цифры – 0 и 1, а также символы «+» и «–» для обозначения знака числа и запятую (точку) для разделения целой и дробной части.

Восьмеричная система счисления. Использует восемь цифр – 0, 1, 2, 3, 4, 5, 6, и 7, а также символы «+» и «–» для обозначения знака числа и запятую (точку) для разделения целой и дробной частей числа. Широко использовалась в программировании в 1950-70-ые гг. К настоящему времени практически полностью вытеснена шестнадцатеричной системой счисления, однако функции перевода числа из десятичной системы в восьмеричную и обратно сохраняются в микрокалькуляторах и многих языках программирования.

Десятичная система счисления. Использует десять обычных цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, а также символы «+» и «–» для обозначения знака числа и запятую (точку) для разделения целой и дробной частей числа. Существует массовое заблуждение, будто именно десятичная система счисления является наиболее употребительным способом записи чисел. Между тем, более внимательный анализ правил чтения и записи чисел приводит к другому выводу: система счисления, которой мы обычно пользуемся, фактически является двойной, так как имеет основания – 10 и 1000. В частности, в русском языке известны названия только для первых семи разрядов десятичной системы счисления ( 1 – единица, 10 – десяток, 100 – сотня, 1000 – тысяча, 10000 – тьма, 100000 – легион, 1000000 – миллион ), но предпоследние два из них (легион и тьма) давно вышли из употребления, а соседние с ними (миллион и тысяча) – названия классов, а не только разрядов. Итак, фактически в русском языке остались лишь два самостоятельных названия для десятичных разрядов: десяток и сотня. В других языках – аналогичная ситуация.

Шестнадцатеричная система счисления. Использует шестнадцать цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9 в их обычном смысле, а затем A=10, B=11 , C=12 , D=13 , E=14 , F=15 . Также использует символы «+» и «–» для обозначения знака числа и запятую (точку) для разделения целой и дробной частей числа. Внедрена американской корпорацией IBM. Широко используется в программировании для IBM-совместимых компьютеров. С другой стороны, в некоторых языках сохранились и следы использования этой системы счисления в прошлом. Например, в романских языках (испанском, французском и др.) числительные от 11 до 16 образуются по одному правилу, а от 17 до 19 – по другому. А в русском языке известен пуд, равный 16 килограммам.

Наиболее простыми с точки зрения технической реализации являются так называемые двухпозиционные элементы, способные находиться в одном из двух устойчивых состояний, например:

Электромагнитное реле замкнуто или разомкнуто;

Ферромагнитная поверхность намагничена или размагничена;

Магнитный сердечник намагничен в некотором направлении или в противоположном ему;

Транзисторный ключ находится в проводящем или замкнутом состоянии и т.д.

Одно из этих устойчивых состояний может представляться цифрой 0, другое - цифрой 1. С двоичной системой связаны и другие существенные преимущества. Она обеспечивает максимальную помехоустойчивость в процессе передачи информации как между отдельными узлами автоматического устройства, так и на большие расстояния. В ней предельно просто выполняются арифметические действия и возможно применение аппарата булевой алгебры для выполнения логических преобразований информации. Благодаря таким особенностям двоичная система стала стандартом при построении ЭВМ. Широкое применение в ЭВМ нашли также восьмеричная и шестнадцатеричная системы счисления. Обмен информацией между устройствами большинства ЭВМ осуществляется путем передачи двоичных слов. Пользоваться такими словами из-за их большой длины и зрительной однородности человеку неудобно. Поэтому специалисты (программисты, инженеры) как на этапах составления несложных программ для микроЭВМ, их отладки, ручного ввода-вывода данных, так и на этапах их разработки, создания, настройки вычислительных систем заменяют коды машинных команд, адреса и операнды на эквивалентные им величины в восьмеричной или шестнадцатеричной системе счисления.
Системы счисления
Удобства последующего преобразования дискретный сигнал подвергается кодированию ( Формы представления информации в ЭВМ ). Большинство кодов основано на системах счисления, причем использующих позиционный принцип образования числа, при котором значение каждой цифры зависит от ее положения в числе.
Примером позиционной формы записи чисел является та, которой мы пользуемся (так называемая арабская форма чисел). Так, в числах 123 и 321 значения цифры 3, например, определяются ее положением в числе: в первом случае она обозначает три единицы (т.е. просто три), а во втором – три сотни (т.е. триста).
Тогда полное число получается по формуле:

где l – количество разрядов числа, уменьшенное на 1,
i – порядок разряда,
m – основание системы счисления,
a i – множитель, принимающий любые целочисленные значения от 0 до m -1, и соответствующий цифре i -го порядка числа.
Например, для десятичного ( m = 10) числа 345 его полное значение рассчитывается по формуле:
3*102 + 4*101 + 5*100 = 345.
Римские числа являются примером полупозиционной системы образования числа: так, в числах IX и XI знак I обозначает в обоих случаях единицу (признак непозиционной системы), но, будучи расположенным слева от знака X (обозначающего десять), вычитается из десяти, а при расположении справа – прибавляется к десяти. В первом случае полное значение числа равно 9, во втором – 11.
В современной информатике используются в основном три системы счисления (все – позиционные): двоичная, шестнадцатеричная и десятичная.
Двоичная система счисления используется для кодирования дискретного сигнала, потребителем которого является вычислительная техника. Такое положение дел сложилось исторически, поскольку двоичный сигнал проще представлять на аппаратном уровне. В этой системе счисления для представления числа применяются два знака – 0 и 1.
Шестнадцатеричная система счисления используется для кодирования дискретного сигнала, потребителем которого является хорошо подготовленный пользователь – специалист в области информатики. В такой форме представляется содержимое любого файла, затребованное через интегрированные оболочки операционной системы, например, средствами Norton Commander в случае MS DOS. Используемые знаки для представления числа – десятичные цифры от 0 до 9 и буквы латинского алфавита – A, B, C, D, E, F.
Десятичная система счисления используется для кодирования дискретного сигнала, потребителем которого является так называемый конечный пользователь – неспециалист в области информатики (очевидно, что и любой человек может выступать в роли такого потребителя). Используемые знаки для представления числа – цифры от 0 до 9.
Соответствие между первыми несколькими натуральными числами всех трех систем счисления представлено в таблице перевода:

Для различения систем счисления, в которых представлены числа, в обозначение двоичных и шестнадцатеричных чисел вводят дополнительные реквизиты:
• для двоичных чисел – нижний индекс справа от числа в виде цифры 2 или букв В либо b (binary – двоичный), либо знак B или b справа от числа. Например, 101000 2 = 101000 b = 101000 B = 101000B = 101000b;
• для шестнадцатеричных чисел - нижний индекс справа от числа в виде числа 16 или букв H либо h (hexadecimal – шестнадцатеричный), либо знак H или h справа от числа. Например, 3AB 16 = 3AB H = 3AB h = 3ABH = 3ABh.
Для перевода чисел из одной системы счисления в другую существуют определенные правила . Они различаются в зависимости от формата числа – целое или правильная дробь. Для вещественных чисел используется комбинация правил перевода для целого числа и правильной дроби.
Правила перевода целых чисел
Результатом перевода целого числа всегда является целое число.
Перевод из десятичной системы счисления в двоичную и шестнадцатеричную:
а) исходное целое число делится на основание системы счисления, в которую переводится (на 2 - при переводе в двоичную систему счисления или на 16 - при переводе в шестнадцатеричную); получается частное и остаток;
б) если полученное частное меньше основания системы счисления, в которую выполняется перевод, процесс деления прекращается, переходят к шагу в)
в) иначе над частным выполняют действия, описанные в шаге а);
в) все полученные остатки и последнее частное преобразуются в соответствии с таблицей перевода в цифры той системы счисления, в которую выполняется перевод;
г) формируется результирующее число: его старший разряд – полученное последнее частное, каждый последующий младший разряд образуется из полученных остатков от деления, начиная с последнего и кончая первым. Таким образом, младший разряд полученного числа – первый остаток от деления, а старший – последнее частное.







Правила перевода правильных дробей
Напомним, что правильная дробь имеет нулевую целую часть, т.е. у нее числитель меньше знаменателя.
Результат перевода правильной дроби всегда правильная дробь.
Перевод из десятичной системы счисления в двоичную и шестнадцатеричную :
а) исходная дробь умножается на основание системы счисления, в которую переводится (2 или 16);
б) в полученном произведении целая часть преобразуется в соответствии с таблицей в цифру нужной системы счисления и отбрасывается – она является старшей цифрой получаемой дроби;
в) оставшаяся дробная часть (это правильная дробь) вновь умножается на нужное основание системы счисления с последующей обработкой полученного произведения в соответствии с шагами а) и б);
г) процедура умножения продолжается до тех пор, пока ни будет получен нулевой результат в дробной части произведения или ни будет достигнуто требуемое количество цифр в результате;
д) формируется искомое число: последовательно отброшенные в шаге б) цифры составляют дробную часть результата, причем в порядке уменьшения старшинства.
Пример 1 . Выполнить перевод числа 0,847 в двоичную систему счисления. Перевод выполнить до четырех значащих цифр после запятой.
Имеем:

Пример 2. Выполнить перевод числа 0,847 в шестнадцатеричную систему счисления. Перевод выполнить до трех значащих цифр.
Имеем:

В данном примере также процедура перевода прервана.
Таким образом, 0,847 = 0,D8D 16 .
Перевод из двоичной и шестнадцатеричной систем счисления в десятичную.
В этом случае рассчитывается полное значение числа по формуле , причем коэффициенты a i принимают десятичное значение в соответствии с таблицей .
Пример 3 . Выполнить перевод из двоичной системы счисления в десятичную числа 0,1101 2 .
Имеем:
0,1101 2 = 1*2 -1 + 1*2 -2 + 0*2 -3 +1*2 -4 = 0,5 + 0,25 + 0 + 0,0625 = 0,8125.
Расхождение полученного результата с исходным числом (см. пример 1 ) вызвано тем, что процедура перевода в двоичную дробь была прервана.
Таким образом, 0,1101 2 = 0,8125.
Пример 4 . Выполнить перевод из шестнадцатеричной системы счисления в десятичную числа 0,D8D 16 .
Имеем:
0,D8D 16 = 13*16 -1 + 8*16 -2 + 13*16 -3 = 13*0,0625 + 8*0,003906 + 13* 0,000244 = 0,84692.
Расхождение полученного результата с исходным числом (см. пример 2 ) вызвано тем, что процедура перевода в шестнадцатеричную дробь была прервана.
Таким образом, 0,D8D 16 = 0,84692.
Перевод из двоичной системы счисления в шестнадцатеричную:
а) исходная дробь делится на тетрады, начиная с позиции десятичной точки вправо. Если количество цифр дробной части исходного двоичного числа не кратно 4, оно дополняется справа незначащими нулями до достижения кратности 4;
б) каждая тетрада заменяется шестнадцатеричной цифрой в соответствии с таблицей .
Пример 5 . Выполнить перевод из двоичной системы счисления в шестнадцатеричную числа 0,1101 2 .
Имеем: В соответствии с таблицей 1101 2 = D 16 . Тогда 0,1101 2 = 0,D 16 .

Пример 6 . Выполнить перевод из двоичной системы счисления в шестнадцатеричную числа 0,00101012 .
Поскольку количество цифр дробной части не кратно 4, добавим справа незначащий ноль:


Правило перевода дробных чисел (неправильных дробей)
Напомним, что неправильная дробь имеет ненулевую дробную часть, т.е. у нее числитель больше знаменателя.
Результат перевода неправильной дроби всегда неправильная дробь.
При переводе отдельно переводится целая часть числа, отдельно – дробная. Результаты складываются.
Пример 1 . Выполнить перевод из десятичной системы счисления в шестнадцатеричную числа 19,847. Перевод выполнять до трех значащих цифр после запятой.
Представим исходное число как сумму целого числа и правильной дроби:
19,847 = 19 + 0,847.
Как следует из примера 2 раздела Перевод целых чисел 19 = 13 16 , а в соответствии с примером 2 раздела Перевод правильных дробей 0,847 = 0,D8D 16 .
Тогда имеем:
19 + 0,847 = 13 16 + 0,D8D 16 = 13,D8D 16 .
Таким образом, 19,847 = 13,D8D 16 .
Способы перевода чисел из одной системы счисления в другую.
Перевод чисел из одной позиционной системы счисления в другую: перевод целых чисел.
Чтобы перевести целое число из одной системы счисления с основанием d1 в другую с основанием d2 необходимо последовательно делить это число и получаемые частные на основание d2 новой системы до тех пор, пока не получится частное меньше основания d2. Последнее частное – старшая цифра числа в новой системе счисления с основанием d2, а следующие за ней цифры - это остатки от деления, записываемые в последовательности, обратной их получению. Арифметические действия выполнять в той системе счисления, в которой записано переводимое число.

Пример 1. Перевести число 11(10) в двоичную систему счисления.


Ответ: 11(10)=1011(2).

Пример 2. Перевести число 122(10) в восьмеричную систему счисления.


Ответ: 122(10)=172(8).

Пример 3. Перевести число 500(10) в шестнадцатеричную систему счисления.


Ответ: 500(10)=1F4(16).
Перевод чисел из одной позиционной системы счисления в другую: перевод правильных дробей.
Чтобы перевести правильную дробь из системы счисления с основанием d1 в систему с основанием d2, необходимо последовательно умножать исходную дробь и дробные части получающихся произведений на основание новой системы счисления d2. Правильная дробь числа в новой системе счисления с основанием d2 формируется в виде целых частей получающихся произведений, начиная с первого.
Если при переводе получается дробь в виде бесконечного или расходящегося ряда, процесс можно закончить при достижении необходимой точности.
При переводе смешанных чисел, необходимо в новую систему перевести отдельно целую и дробную части по правилам перевода целых чисел и правильных дробей, а затем оба результата объединить в одно смешанное число в новой системе счисления.
Пример 1. Перевести число 0,625(10) в двоичную систему счисления.


Ответ: 0,625(10)=0,101(2).
Пример 2. Перевести число 0,6(10) в восьмеричную систему счисления.


Ответ: 0,6(10)=0,463(8).
Пример 2. Перевести число 0,7(10) в шестнадцатеричную систему счисления.


Ответ: 0,7(10)=0,В333(16).
Перевод двоичных, восьмеричных и шестнадцатеричных чисел в десятичную систему счисления.
Для перевода числа P-ичной системы в десятичную необходимо использовать следующую формулу разложения:
аnan-1…а1а0=аnPn+ аn-1Pn-1+…+ а1P+a0 .
Пример 1. Перевести число 101,11(2) в десятичную систему счисления.


Ответ: 101,11(2)= 5,75(10) .
Пример 2. Перевести число 57,24(8) в десятичную систему счисления.


Ответ: 57,24(8) = 47,3125(10) .
Пример 3. Перевести число 7A,84(16) в десятичную систему счисления.


Ответ: 7A,84(16)= 122,515625(10) .


Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему счисления и обратно.
Для перевода числа из восьмеричной системы счисления в двоичную необходимо каждую цифру этого числа записать трехразрядным двоичным числом (триадой).
Пример: записать число 16,24(8) в двоичной системе счисления.

Ответ: 16,24(8)= 1110,010100(2) .

Примечание: незначащие нули слева для целых чисел и справа для дробей не записываются.

Для обратного перевода двоичного числа в восьмеричную систему счисления, необходимо исходное число разбить на триады влево и вправо от запятой и представить каждую группу цифрой в восьмеричной системе счисления. Крайние неполные триады дополняют нулями.

Пример: записать число 10110,001001(2) в восьмеричной системе счисления.


Ответ: 1110,010100(2)= 16,24(8) .
Для перевода числа из шестнадцатеричной системы счисления в двоичную необходимо каждую цифру этого числа записать четырехразрядным двоичным числом (тетрадой).

Пример: записать число 7A,5E(16) в двоичной системе счисления.

Ответ: 7A,5E(16)= 1111010,01011110(2) .

Примечание: незначащие нули слева для целых чисел и справа для дробей не записываются.

Для обратного перевода двоичного числа в шестнадцатеричную систему счисления, необходимо исходное число разбить на тетрады влево и вправо от запятой и представить каждую группу цифрой в шестнадцатеричной системе счисления. Крайние неполные триады дополняют нулями.

Пример: записать число 1111010,0111111(2) в шестнадцатеричной системе счисления.


Ответ: 1111010,0111111(2)= 7A,5E(16) .











Вопросы к лекции 3

1. Определение систем счисления (СС). (стр. 1)
2. Понятие позиционной СС. (стр. 1)

3. Сколько цифр используется в двоичной системе счисления? Какое основание имеет данная система? Привести пример числа в двоичной СС. Какие символы используются для обозначения знака числа? Какие символы используются для разделения целой и дробной части числа? (стр. 1)

4. Сколько цифр используется в восьмеричной системе счисления? Какое основание имеет данная система? Привести пример числа в восьмеричной СС. Какие символы используются для обозначения знака числа? Какие символы используются для разделения целой и дробной части числа? (стр. 1)

5. Сколько цифр используется в десятичной системе счисления? Какое основание имеет данная система? Привести пример числа в десятичной СС.
Какие символы используются для обозначения знака числа? Какие символы используются для разделения целой и дробной части числа? (стр. 1)

6. Сколько цифр используется в шестнадцатеричной системе счисления? Какое основание имеет данная система? Привести пример числа в шестнадцатеричной СС. Какие символы используются для обозначения знака числа? Какие символы используются для разделения целой и дробной части числа? (стр. 1)

7. Привести формулу полного числа в позиционной СС с пояснениями для каждого знака. Привести формулу для расчета полного значения числа 345 в десятичной СС. (стр. 3-4)

8. Привести таблицу нескольких чисел для трех позиционных СС. (стр. 4-5)

9. Какие дополнительные реквизиты используются для обозначения различных позиционных систем счисления? Привести пример. (стр. 4)

10. Привести правила перевода целого числа из десятичной СС в двоичную, восьмеричную, шестнадцатеричную. Привести примеры. (стр. 4-6)

11. Как производится перевод чисел из двоичной, восьмеричной, шестнадцатеричной СС в десятичную? Примеры. (стр. 5-7)

12. Как производится перевод из двоичной СС в шестнадцатеричную? Примеры. (стр. 6)

13. Как производится перевод из шестнадцатеричной СС в двоичную? Примеры. (стр. 8)

14. Правила перевода правильных дробей из десятичной СС в двоичную и шестнадцатеричную СС (стр. 8-9)